Publications
2023
2022
-
- Probing Mechanisms of Binding and Allostery in the SARS-CoV-2 Spike Omicron Variant Complexes with the Host Receptor: Revealing Functional Roles of the Binding Hotspots in Mediating Epistatic Effects and Communication with Allosteric Pockets.
Int J Mol Sci. 2022. 23(19):11542. doi: 10.3390/ijms231911542. PMID: 36232845. - Interpretable Machine Learning Models for Molecular Design of Tyrosine Kinase Inhibitors Using Variational Autoencoders and Perturbation-Based Approach of Chemical Space Exploration.
Int J Mol Sci. 2022. 23(19):11262. doi: 10.3390/ijms231911262. PMID: 36232566.
- Integrating Conformational Dynamics and Perturbation-Based Network Modeling for Mutational Profiling of Binding and Allostery in the SARS-CoV-2 Spike Variant Complexes with Antibodies: Balancing Local and Global Determinants of Mutational Escape Mechanisms.
Biomolecules. 2022. 12(7):964. doi: 10.3390/biom12070964. PMID: 35883520.
-
Conformational Dynamics and Mechanisms of Client Protein Integration into the Hsp90 Chaperone Controlled by Allosteric Interactions of Regulatory Switches: Perturbation-Based Network Approach for Mutational Profiling of the Hsp90 Binding and Allostery.
J Phys Chem B. 2022. doi: 10.1021/acs.jpcb.2c03464. PMID: 35853093. - Frustration-driven allosteric regulation and signal transmission in the SARS-CoV-2 spike omicron trimer structures: a crosstalk of the omicron mutation sites allosterically regulates tradeoffs of protein stability and conformational adaptability.
Verkhivker GM, Agajanian S, Kassab R, Krishnan K. Phys Chem Chem Phys. 2022 Jul 27;24(29):17723-17743. doi: 10.1039/d2cp01893d. PMID: 35839100. -
Biophysical Insight into the SARS-CoV2 Spike–ACE2 Interaction and Its Modulation by Hepcidin through a Multifaceted Computational Approach.
Hadi-Alijanvand H, Di Paola L, Hu G, Leitner D, Verkhivker G, Sun P, Poudel H, Giuliani A. ACS Omega. 2022. doi: 10.1021/acsomega.2c00154. - Hierarchical Computational Modeling and Dynamic Network Analysis of Allosteric Regulation in the SARS-CoV-2 Spike Omicron Trimer Structures: Omicron Mutations Cooperate to Allosterically Control Balance of Protein Stability and Conformational Adaptability
Verkhivker G, Agajanian S, Kassab R, Krishnan K. Biorxiv. 2022. doi: https://doi.org/10.1101/2022.04.11.487920. - Landscape-Based Protein Stability Analysis and Network Modeling of Multiple Conformational States of the SARS-CoV-2 Spike D614G Mutant: Conformational Plasticity and Frustration-Induced Allostery as Energetic Drivers of Highly Transmissible Spike Variants.
Verkhivker GM, Agajanian S, Kassab R, Krishnan K. J Chem Inf Model. 2022, 62, 8, 1956-1978. doi: 10.1021/acs.jcim.2c00124. - Computer Simulations and Network-Based Profiling of Binding and Allosteric Interactions of SARS-CoV-2 Spike Variant Complexes and the Host Receptor: Dissecting the Mechanistic Effects of the Delta and Omicron Mutations.
Verkhivker GM, Agajanian S, Kassab R, Krishnan K. Int J Mol Sci. 2022, 23, 8, 4376. doi: 10.3390/ijms23084376. - Dissecting mutational allosteric effects in alkaline phosphatases associated with different Hypophosphatasia phenotypes: An integrative computational investigation.
Xiao F, Zhou Z, Song X, Gan M, Long J, Verkhivker G, Hu G. PLoS Comput Biol. 2022,18, 3, e1010009. doi: 10.1371/journal.pcbi.1010009. - Structural and Computational Studies of the SARS-CoV-2 Spike Protein Binding Mechanisms with Nanobodies: From Structure and Dynamics to Avidity-Driven Nanobody Engineering.
Verkhivker G. Int J Mol Sci. 2022, 23, 6, 2928. doi: 10.3390/ijms23062928. - Exploring Mechanisms of Allosteric Regulation and Communication Switching in the Multiprotein Regulatory Complexes of the Hsp90 Chaperone with Cochaperones and Client Proteins: Atomistic Insights from Integrative Biophysical Modeling and Network Analysis of Conformational Landscapes.
Verkhivker G. J Mol Biol. 2022, 167506. doi: 10.1016/j.jmb.2022.167506. - Allosteric Determinants of the SARS-CoV-2 Spike Protein Binding with Nanobodies: Examining Mechanisms of Mutational Escape and Sensitivity of the Omicron Variant.
Verkhivker G. Int J Mol Sci. 2022 23, 4, 2172. doi: 10.3390/ijms23042172 - Conformational Flexibility and Local Frustration in the Functional States of the SARS-CoV-2 Spike B.1.1.7 and B.1.351 Variants: Mutation-Induced Allosteric Modulation Mechanism of Functional Dynamics and Protein Stability.
Verkhivker G. Int J Mol Sci. 2022 23, 3, 1646. doi: 10.3390/ijms23031646.
2021
- The Landscape-Based Protein Stability Analysis and Network Modeling of Multiple Conformational States of the SARS-CoV-2 Spike D614 Mutant: Conformational Plasticity and Frustration-Driven Allostery as Energetic Drivers of Highly Transmissible Spike Variant.
Verkhivker G, Agajanian S, Kassab R, Krishnan K. Biorxiv. 2021. DOI: 10.1101/2021.12.09.471953 - Allosteric Control of Structural Mimicry and Mutational Escape in the SARS-CoV-2 Spike Protein Complexes with the ACE2 Decoys and Miniprotein Inhibitors: A Network-Based Approach for Mutational Profiling of Binding and Signaling.
Verkhivker G, Agajanian S, Oztas D, Gupta G. J Chem Inf Model. 2021, 61, 10, 5172-5191. doi: 10.1021/acs.jcim.1c00766. - Atomistic Simulations and In Silico Mutational Profiling of Protein Stability and Binding in the SARS-CoV-2 Spike Protein Complexes with Nanobodies: Molecular Determinants of Mutational Escape Mechanisms.
Verkhivker G, Agajanian S, Oztas D, Gupta G. ACS Omega. 2021, 6, 40, 26354-26371. doi: 10.1021/acsomega.1c03558. - Making the invisible visible: Toward structural characterization of allosteric states, interaction networks, and allosteric regulatory mechanisms in protein kinases.
Verkhivker G. Curr Opin Struct Biol. 2021, 71, 71-78. doi: 10.1016/j.sbi.2021.06.002. Epub 2021 Jul 5. Review. PubMed PMID: 34237520. - Dimeric allostery mechanism of the plant circadian clock photoreceptor Zeitlupe.
Trozzi F, Wang F, Verkhivker G, Zoltowski B.D., Tao P. PLoS Comput Biol. 2021, 17, 7, e1009168. doi: 10.1371/journal.pcbi.1009168. - Dissecting Molecular Determinants of Mutational Escape Mechanisms in the SARS-CoV-2 Spike Protein Complexes with Nanobodies: Atomistic Simulations and Ensemble-Based Deep Mutational Scanning of Protein Stability and Binding Interactions.
Verkhivker G, Agajanian S, Oztas D, Gupta G. Preprints. 2021. doi: 10.20944/preprints202107.0295.v1 - Dynamic Profiling of Binding and Allosteric Propensities of the SARS-CoV-2 Spike Protein with Different Classes of Antibodies: Mutational and Perturbation-Based Scanning Reveals the Allosteric Duality of Functionally Adaptable Hotspots.
Verkhivker G, Agajanian S, Oztas D, Gupta G. J Chem Theory Comput. 2021, 17, 7, 4578-4598. doi: 10.1021/acs.jctc.1c00372. - Atomistic Simulations and Deep Mutational Scanning of Protein Stability and Binding Interactions in the SARS-CoV-2 Spike Protein Complexes with Nanobodies: Molecular Determinants of Mutational Escape Mechanisms.
Verkhivker G, Agajanian S, Oztas D, Gupta G. ACS Omega. 2021, 6, 40, 26354–26371. doi: 10.1021/acsomega.1c03558. - Computational analysis of protein stability and allosteric interaction networks in distinct conformational forms of the SARS-CoV-2 spike D614G mutant: reconciling functional mechanisms through allosteric model of spike regulation.
Verkhivker G, Agajanian S, Oztas D, Gupta G. J Biomol Struct Dyn. 2021,1-18. doi: 10.1080/07391102.2021. - Landscape-Based Mutational Sensitivity Cartography and Network Community Analysis of the SARS-CoV-2 Spike Protein Structures: Quantifying Functional Effects of the Circulating D614G Variant.
Verkhivker G, Agajanian S, Oztas D, Gupta G. ACS Omega. 2021, 6, 24,16216-16233. doi: 10.1021/acsomega.1c02336. - Deep Mutational Scanning of Dynamic Interaction Networks in the SARS-CoV-2 Spike Protein Complexes: Allosteric Hotspots Control Functional Mimicry and Resilience to Mutational Escape.
Verkhivker, G. J. Chem. Inf. Model. 2021, 61, 10, 5172–5191. doi: 10.1101/2021.06.15.448568 - Landscape-Based Mutational Sensitivity Cartography and Network Community Analysis of the SARS-CoV-2 Spike Protein Structures: Quantifying Functional Effects of the Circulating Variants.
Verkhivker G, Agajanian S, Oztas D, Gupta G. ACS Omega. 2021, 6, 24, 16216–16233. doi: 10.1021/acsomega.1c02336. - Comparative Perturbation-Based Modeling of the SARS-CoV-2 Spike Protein Binding with Host Receptor and Neutralizing Antibodies: Structurally Adaptable Allosteric Communication Hotspots Define Spike Sites Targeted by Global Circulating Mutations.
Verkhivker G, Agajanian S, Oztas D, Gupta G. Biochemistry. 2021, 60, 19, 1459-1484. doi: 10.1021/acs.biochem.1c00139. - Integrated Biophysical Modeling of the SARS-CoV-2 Spike Protein Binding and Allosteric Interactions with Antibodies.
Verkhivker G, Di Paola L. J Phys Chem B. 2021, 125, 18, 4596-4619. doi: 10.1021/acs.jpcb.1c00395. - Dynamic Profiling of Binding and Allosteric Propensities of the SARS-CoV-2 Spike Protein with Different Classes of Antibodies: Mutational and Perturbation-Based Scanning Reveal Allosteric Duality of Functionally Adaptable Hotspots.
Verkhivker G, Agajanian S, Oztas D, Gupta G. J. Chem.Theory Comput. 2021, 17, 7, 4578–4598. doi: 10.1021/acs.jctc.1c00372. - Comparative Perturbation-Based Modeling of the SARS-CoV-2 Spike Protein Binding with Host Receptor and Neutralizing Antibodies : Structurally Adaptable Allosteric Communication Hotspots Define Spike Sites Targeted by Global Circulating Mutations.
Verkhivker G, Agajanian S, Oztas D, Gupta G. Biochemistry. 2021, 60, 19, 1459–1484. doi: 10.1021/acs.biochem.1c00139 - Computational Analysis of Protein Stability and Allosteric Interaction Networks in Distinct Conformational Forms of the SARS-CoV-2 Spike D614G Mutant: Reconciling Functional Mechanisms through Allosteric Model of Spike Regulation.
Verkhivker G, Agajanian S, Oztas D, Gupta G. J Biomol Struct Dyn. 2021, 1-18. doi: 10.1080/07391102.2021.1933594. - Dynamic Network Modeling of Allosteric Interactions and Communication Pathways in the SARS-CoV-2 Spike Trimer Mutants: Differential Modulation of Conformational Landscapes and Signal Transmission via Cascades of Regulatory Switches.
Verkhivker G, Di Paola L. J Phys Chem B. 2021,125, 3, 850-873. doi: 10.1021/acs.jpcb.0c10637. - Coevolutionary Analysis and Perturbation-Based Network Modeling of the SARS-CoV-2 Spike Protein Complexes with Antibodies: Binding-Induced Control of Dynamics, Allosteric Interactions and Signaling.
Verkhivker G, Di Paola L. J. Phys. Chem. B. 2021, 125, 18, 4596–4619. doi: 10.1101/2021.01.19.427320
2020
- Molecular Simulations and Network Modeling Reveal an Allosteric Signaling in the SARS-CoV-2 Spike Proteins.
Verkhivker G. J Proteome Res. 2020, 19, 11, 4587-4608. doi: 10.1021/acs.jproteome.0c00654. - Coevolution, Dynamics and Allostery Conspire in Shaping Cooperative Binding and Signal Transmission of the SARS-CoV-2 Spike Protein with Human Angiotensin-Converting Enzyme 2.
Verkhivker G. Int J Mol Sci. 2020, 21, 21, 8268. doi: 10.3390/ijms21218268. - Impact of Early Pandemic Stage Mutations on Molecular Dynamics of SARS-CoV-2 Mpro.
Sheik Amamuddy O, Verkhivker GM, Tastan Bishop Ö. J Chem Inf Model. 2020, 60, 10, 5080-5102. doi: 10.1021/acs.jcim.0c00634. - Dissecting Molecular Principles of the Hsp90 Chaperone Regulation by Allosteric Modulators Using a Hierarchical Simulation Approach and Network Modeling of Allosteric Interactions: Conformational Selection Dictates the Diversity of Protein Responses and Ligand-Specific Functional Mechanisms.
Astl L, Stetz G, Verkhivker GM. J Chem Theory Comput. 2020, 16, 10, 6656-6677. doi: 10.1021/acs.jctc.0c00503. - Allosteric Regulation at the Crossroads of New Technologies: Multiscale Modeling, Networks, and Machine Learning.
Verkhivker G, Agajanian S, Hu G, Tao P. Front Mol Biosci. 2020, 7, 136. doi: 10.3389/fmolb.2020.00136. - Comparative Dynamics and Functional Mechanisms of the CYP17A1 Tunnels Regulated by Ligand Binding.
Xiao F, Song X, Tian P, Gan M, Verkhivker GM, Hu G. J Chem Inf Model. 2020, 60 7, 3632-3647. doi: 10.1021/acs.jcim.0c00447. - Allosteric Mechanism of the Hsp90 Chaperone Interactions with Cochaperones and Client Proteins by Modulating Communication Spines of Coupled Regulatory Switches: Integrative Atomistic Modeling of Hsp90 Signaling in Dynamic Interaction Networks.
Astl L, Stetz G, Verkhivker G. J Chem Inf Model. 2020, 60, 7, 3616-3631. doi: 10.1021/acs.jcim.0c00380. - Exploring Mechanisms of Communication Switching in the Hsp90-Cdc37 Regulatory Complexes with Client Kinases through Allosteric Coupling of Phosphorylation Sites: Perturbation-Based Modeling and Hierarchical Community Analysis of Residue Interaction Networks.
Stetz G, Astl L, Verkhivker GM. J Chem Theory Comput. 2020, 16, 7, 4706-4725. doi: 10.1021/acs.jctc.0c00280. - Integration of network models and evolutionary analysis into high-throughput modeling of protein dynamics and allosteric regulation: theory, tools and applications.
Liang Z, Verkhivker G, Hu G. Brief Bioinform. 2020, 21, 3, 815-835. doi: 10.1093/bib/bbz029. - Impact of emerging mutations on the dynamic properties the SARS-CoV-2 main protease: an in silico investigation.
Verkhivker G. J. Chem. Inf. Model. 2020, 60, 10, 5080–5102. doi: 10.1021/acs.jcim.0c00634. - Dynamic View of Allosteric Regulation in the Hsp70 Chaperones by J-Domain Cochaperone and Post-Translational Modifications: Computational Analysis of Hsp70 Mechanisms by Exploring Conformational Landscapes and Residue Interaction Networks.
Astl L, Verkhivker G. J Chem Inf Model. 2020, 60, 3, 1614-1631. doi: 10.1021/acs.jcim.9b01045. - Computational Modeling and Engineering of Allosteric Regulatory Mechanisms in Signaling Proteins: Integration of Multiscale Simulations, Network Biology and Machine Learning.
Verkhivker G. Biophysical journal. 2020, 118, 3, 206A. doi: https://doi.org/10.1016/j.bpj.2019.11.1238. - Integrated Computational Approaches and Tools for Allosteric Drug Discovery.
Sheik Amamuddy O, Veldman W, Manyumwa C, Khairallah A, Agajanian S, Oluyemi O, Verkhivker G, Tastan Bishop O. Int J Mol Sci. 2020, 21, 3, 847. doi: 10.3390/ijms21030847. PMID: 32013012
2019
- Biophysical simulations and structure-based modeling of residue interaction networks in the tumor suppressor proteins reveal functional role of cancer mutation hotspots in molecular communication.
Verkhivker G. Biochim Biophys Acta Gen Subj. 2019, 1863, 1, 210-225. doi: 10.1016/j.bbagen.2018.10.009. - Data-driven computational analysis of allosteric proteins by exploring protein dynamics, residue coevolution and residue interaction networks.
Astl L, Verkhivker G. Biochim Biophys Acta Gen Subj. 2019, pii: S0304-4165(19)30179-5. doi: 10.1016/j.bbagen.2019.07.008. - Editorial: Machine Learning in Biomolecular Simulations.
Verkhivker G, Spiwok V, Gervasio FL. Front Mol Biosci. 2019, 6, 76. doi: 10.3389/fmolb.2019.00076. - Establishing Computational Approaches Towards Identifying Malarial Allosteric Modulators: A Case Study of Plasmodium falciparum Hsp70s.
Amusengeri A, Astl L, Lobb K, Verkhivker G, Tastan Bishop Ö. Int J Mol Sci. 2019, 20, 22, 5574. doi: 10.3390/ijms20225574. - Integration of Random Forest Classifiers and Deep Convolutional Neural Networks for Classification and Biomolecular Modeling of Cancer Driver Mutations.
Agajanian S, Oluyemi O, Verkhivker G. Front Mol Biosci. 2019, 6, 44. doi: 10.3389/fmolb.2019.00044. - Interrogating Regulatory Mechanisms in Signaling Proteins by Allosteric Inhibitors and Activators: A Dynamic View through the Lens of Residue Interaction Networks.
Verkhivker G, Astl L, Tse A. Adv Exp Med Biol. 2019, 1163, 187-223. doi: 10.1007/978-981-13-8719-7_9. - Atomistic Modeling of the ABL Kinase Regulation by Allosteric Modulators Using Structural Perturbation Analysis and Community-Based Network Reconstruction of Allosteric Communications.
Astl L, Verkhivker G. J Chem Theory Comput. 2019, 15, 5, 3362-3380. doi: 10.1021/acs.jctc.9b00119. - Computational Modeling and Engineering of Allosteric Regulatory Mechanisms in Signaling Proteins: Integration of Multiscale Simulations, Network Biology and Machine Learning Book of Abstracts. Albany 2019: The 20th Conversation.
Verkhivker G. Biophysical Journal. 2020, 118, 3, 206a. doi: 10.1080/07391102.2019.1604468 - Allosteric mechanism of the circadian protein Vivid resolved through Markov state model and machine learning analysis.
Zhou H, Dong Z, Verkhivker G, Zoltowski BD, Tao P. PLoS Comput Biol. 2019, 15, 2, e1006801. doi: 10.1371/journal.pcbi.1006801.
2018
- Computational modeling of the Hsp90 Interactions with cochaperones and small-molecule inhibitors.
Verkhivker G. Methods Mol Biol. 2018, 1709, 253-273. doi: 10.1007/978-1-4939-7477-1_19. - Dynamics-based community analysis and perturbation response scanning of allosteric interaction networks in the TRAP1 chaperone structures dissect molecular linkage between conformational asymmetry and sequential ATP hydrolysis.
Verkhivker G. Biochim Biophys Acta Proteins Proteom. 2018, 1866, 8, 899-912. doi: 10.1016/j.bbapap.2018.04.008. - Multiscale modeling and network-based systems biology analysis of protein kinase regulation by the Hsp90-Cdc37 chaperone system: Towards discovery of synergistic allosteric modulators targeting Hsp90-kinase interactions and evading drug resistance.
Verkhivker, G. Abstracts of Papers of the American Chemical Society. 2018. WOSUID: WOS:000435537706570 - Dissecting Structure-Encoded Determinants of Allosteric Cross-Talk between Post-Translational Modification Sites in the Hsp90 Chaperones.
Stetz G, Tse A, Verkhivker G. Sci. Rep. 2018, 8, 1, 6899. doi: 10.1038/s41598-018-25329-4. - Machine Learning Classification and Structure-Functional Analysis of Cancer Mutations Reveal Unique Dynamic and Network Signatures of Driver Sites in Oncogenes and Tumor Suppressor Genes.
Agajanian S, Odeyemi O, Bischoff N, Ratra S, Verkhivker G. J Chem Inf Model. 2018, 58, 10, 2131-2150. doi: 10.1021/acs.jcim.8b00414. Epub 2018 Oct 3. PMID: 30253099 - Functional Role and Hierarchy of the Intermolecular Interactions in Binding of Protein Kinase Clients to the Hsp90-Cdc37 Chaperone: Structure-Based Network Modeling of Allosteric Regulation.
Stetz G, Verkhivker G. J Chem Inf Model. 2018, 58, 2, 405-421. doi: 10.1021/acs.jcim.7b00638. Epub 2018 Feb 15.
2017
- Computational Analysis of Residue Interaction Networks and Coevolutionary Relationships in the Hsp70 Chaperones: A Community-Hopping Model of Allosteric Regulation and Communication.
Stetz G, Verkhivker G. PLoS Comput Biol. 2017,13,1,e1005299. doi: 10.1371/journal.pcbi.1005299. DOI: 10.1371/journal.pcbi.1005299 - Design, Synthesis, and Evaluation of Dasatinib-Amino Acid and Dasatinib-Fatty Acid Conjugates as Protein Tyrosine Kinase Inhibitors.
Tiwari RK, Brown A, Sadeghiani N, Shirazi AN, Bolton J, Tse A, Verkhivker G, Parang K, Sun G. ChemMedChem. 2017,12,1,86-99. doi: 10.1002/cmdc.201600387. - Leveraging Structural Diversity and Allosteric Regulatory Mechanisms of Protein Kinases in the Discovery of Small Molecule Inhibitors.
Verkhivker, G. Current Medicinal Chemistry. 2017, 24, 42, 4838-4872. doi: 10.2174/0929867323666161006113418. doi: 10.2174/0929867323666161006113418 - Network-based modelling and percolation analysis of conformational dynamics and activation in the CDK2 and CDK4 proteins: Dynamic and energetic polarization of the kinase lobes may determine divergence of the regulatory mechanisms.
Verkhivker G. Mol Biosyst. 2017,13,11,2235-2253. doi: 10.1039/c7mb00355b. - Atomistic simulations and network-based modeling of the Hsp90-Cdc37 chaperone binding with Cdk4 client protein: A mechanism of chaperoning kinase clients by exploiting weak spots of intrinsically dynamic kinase domains.
Czemeres J, Buse K, Verkhivker G. PLoS One. 2017,12,12,e0190267. doi: 10.1371/journal.pone.0190267. - Ensemble-based modeling and rigidity decomposition of allosteric interaction networks and communication pathways in cyclin-dependent kinases: Differentiating kinase clients of the Hsp90-Cdc37 chaperone.
Stetz G, Tse A, Verkhivker G. PLoS One. 2017,12,11,e0186089. doi: 10.1371/journal.pone.0186089.
2016
- Computational studies of allosteric regulation of BRAF kinases: Combining multiscale modeling and network analysis in design of conformation-specific and allosteric modulators targeting oncogenic BRAF mutants.
Verkhivker G, Blacklock K, Tse A. Abstracts of Papers of the American Chemical Society. 2016. WOSUID: WOS:000431903806559 - Dissecting allosteric regulatory mechanisms of the Hsp90 chaperone interactions with the protein kinase clients: Integrating structural bioinformatics with multiscale atomistic simulations and biophysical experiments.
Verkhivker G, Blacklock K, Buchner J. Abstracts of Papers of the American Chemical Society. 2016. WOSUID: WOS:000431903806455. - Exploring Molecular Mechanisms of Paradoxical Activation in the BRAF Kinase Dimers: Atomistic Simulations of Conformational Dynamics and Modeling of Allosteric Communication Networks and Signaling Pathways.
Tse A, Verkhivker G. Plos ONE. 2016,11,11,e0166583. doi: 10.1371/journal.pone.0166583. - Integrating genetic and structural data on human kinome in network-based modeling of kinase sensitivities and resistance to targeted anticancer drugs.
Verkhivker, G. Abstracts of Papers of the American Chemical Society. 2016. WOSUID: WOS:000431903806011. - Molecular dynamics simulations and modelling of the residue interaction networks in the BRAF kinase complexes with small molecule inhibitors: probing the allosteric effects of ligand-induced kinase dimerization and paradoxical activation.
Verkhivker G. Mol Biosyst. 2016,12,10,3146-65. doi: 10.1039/c6mb00298f. - Probing Allosteric Inhibition Mechanisms of the Hsp70 Chaperone Proteins Using Molecular Dynamics Simulations and Analysis of the Residue Interaction Networks.
Stetz G, Verkhivker G. J Chem Inf Model. 2016,56,8,1490-517. doi: 10.1021/acs.jcim.5b00755. - INTEGRATING GENETIC AND STRUCTURAL DATA ON HUMAN PROTEIN KINOME IN NETWORK-BASED MODELING OF KINASE SENSITIVITIES AND RESISTANCE TO TARGETED AND PERSONALIZED ANTICANCER DRUGS.
Verkhivker G. Pac Symp Biocomput. 2016,21,45-56. PubMed PMID: 26776172.
2015
- Dancing through Life: Molecular Dynamics Simulations and Network-Centric Modeling of Allosteric Mechanisms in Hsp70 and Hsp110 Chaperone Proteins.
Stetz G, Verkhivker G. PLoS One. 2015,10,11,e0143752. doi: 10.1371/journal.pone.0143752. - Molecular Determinants Underlying Binding Specificities of the ABL Kinase Inhibitors: Combining Alanine Scanning of Binding Hot Spots with Network Analysis of Residue Interactions and Coevolution.
Tse A, Verkhivker G. PLoS One. 2015,10,6,e0130203. doi: 10.1371/journal.pone.0130203. - Molecular Dynamics Simulations and Structural Network Analysis of c-Abl and c-Src Kinase Core Proteins: Capturing Allosteric Mechanisms and Communication Pathways from Residue Centrality.
Tse A, Verkhivker G. J Chem Inf Model. 2015,55,8,1645-62. doi: 10.1021/acs.jcim.5b00240. - Small-world networks of residue interactions in the Abl kinase complexes with cancer drugs: topology of allosteric communication pathways can determine drug resistance effects.
Tse A, Verkhivker G. Mol Biosyst. 2015,11,7,2082-95. doi: 10.1039/c5mb00246j.
2014
- Allosteric Regulation of the Hsp90 Dynamics and Stability by Client Recruiter Cochaperones: Protein Structure Network Modeling.
Blacklock K, Verkhivker G. PLoS One. 2014,9,1,e86547. doi: 10.1371/journal.pone.0086547. - Computational modeling of allosteric regulation in the hsp90 chaperones: a statistical ensemble analysis of protein structure networks and allosteric communications.
Blacklock K, Verkhivker G. PLoS Comput Biol. 2014,10,6,e1003679. doi: 10.1371/journal.pcbi.1003679. - Computational Studies of Allosteric Regulation in the Hsp90 Molecular Chaperone: From Functional Dynamics and Protein Structure Networks to Allosteric Communications and Targeted Anti-Cancer Modulators.
Verkhivker G. Israel Journal of Chemistry. 2014, 54, 8-9,1052-1064. doi: 10.1002/ijch.201300143. - Structure-based network analysis of activation mechanisms in the ErbB family of receptor tyrosine kinases: the regulatory spine residues are global mediators of structural stability and allosteric interactions.
James KA, Verkhivker G. PLoS One. 2014,9,11,3113488. doi:10.1371/journal.pone.0113488. - Structure-functional prediction and analysis of cancer mutation effects in protein kinases.
Dixit A, Verkhivker G. Comput Math Methods Med 2014. 2014, 653487. doi: 10.1155/2014/653487.
2013
- Differential modulation of functional dynamics and allosteric interactions in the Hsp90-cochaperone complexes with p23 and Aha1: a computational study.
Blacklock K, Verkhivker G. PLoS One. 2013, 8,8,e71936. doi: 10.1371/journal.pone.0071936. - Experimentally guided structural modeling and dynamics analysis of Hsp90-p53 interactions: allosteric regulation of the Hsp90 chaperone by a client protein.
Blacklock K, Verkhivker G. J Chem Inf Model. 2013, 53,11,2962-78. doi: 10.1021/ci400434g. - Structural bioinformatics and protein docking analysis of the molecular chaperone-kinase interactions: towards allosteric inhibition of protein kinases by targeting the hsp90-cdc37 chaperone machinery.
Lawless N, Blacklock K, Berrigan E, Verkhivker G. Pharmaceuticals (Basel). 2013, 6,11,1407-28. doi: 10.3390/ph6111407.
2012
- From coding variant to structure and function insight.
Friedman A.J, Torkamani A, Verkhivker G, Schork N.J. Proteomics Research Journal. 2012. EID: 2-s2.0-84892461701 - Integrating ligand-based and protein-centric virtual screening of kinase inhibitors using ensembles of multiple protein kinase genes and conformations.
Dixit A, Verkhivker G. J Chem Inf Model. 2012, 52,10,2501-15. doi: 10.1021/ci3002638. - Probing molecular mechanisms of the hsp90 chaperone: biophysical modeling identifies key regulators of functional dynamics.
Dixit A, Verkhivker G. PLoS One. 2012, 7,5,e37605. doi: 10.1371/journal.pone.0037605. - Simulating Molecular Mechanisms of the MDM2-Mediated Regulatory Interactions: A Conformational Selection Model of the MDM2 Lid Dynamics.
Verkhivker G. Plos One. 2012, 7,7,e40897. doi: 10.1371/journal.pone.0040897.
2011
- A systematic protocol for the characterization of Hsp90 modulators.
Matts RL, Brandt GEL, Lu Y, Dixit A, Mollapour M, Wang S, Donnelly AC, Neckers L, Verkhivker GM, Blagg BSJ. Bioorg Med Chem. 2011, 19,1,684-92. doi: 10.1016/j.bmc.2010.10.029. - Computational modeling of allosteric communication reveals organizing principles of mutation-induced signaling in ABL and EGFR kinases.
Dixit A, Verkhivker G. PLoS Comput Biol. 2011, 7,10,e1002179. doi: 10.1371/journal.pcbi.1002179. - Elucidation and assessment of the Hsp90 C-terminal inhibitor binding site.
Matts RL, Dixit A, Peterson LB, Sun L, Voruganti S, Kalyanaraman, Hartson SD, Verkhivker GM, Blagg BSJ. ACS Chem Biol. 2011, 6,8,800-807. doi: 10.1021/cb200052x. - The energy landscape analysis of cancer mutations in protein kinases.
Dixit A, Verkhivker GM. PLoS One. 2011, 6,10,e26071. doi: 10.1371/journal.pcbi.1002179. - Computational Modeling of Allosteric Communication Reveals Organizing Principles of Mutation-Induced Signaling in ABL and EGFR Kinases.
Dixit A, Verkhivker GM. PLoS Comput Biol. 2011, 7,10,e1002179. doi: 10.1371/journal.pcbi.1002179. - Elucidation of the Hsp90 C-terminal inhibitor binding site.
Matts RL, Dixit A, Peterson LB, Sun L, Voruganti S, Kalyanaraman P, Hartson SD, Verkhivker G, Blagg BS. ACS Chem Biol. 2011 Aug 19;6(8):800-7. doi: 10.1021/cb200052x. - From coding variants to structure and function insights.
Friedman A, Torkamani A, Verkhivker GM, Schork NJ. In the book “Protein Structure” Ed.Lauren M. Haggerty Series: Protein Science and Engineering Nova Science Publishers, 2011, 3:395-405. - The Energy Landscape Analysis of Cancer Mutations in Protein Kinases
Dixit A, Verkhivker, G. PLoS One. 2011, 6,10,e26071. doi: 10.1371/journal.pone.0026071.
2010
- Dynamics-Based Discovery of Allosteric Inhibitors: Selection of New Ligands for the C-terminal Domain of Hsp90.
Morra G, Neves MAC, Plescia CJ, Tsustsumi C, Neckers L, Verkhivker GM, Altieri DC, Colombo G. J Chem Theory Comput. 2010, 6,9,2978-89. doi: 10.1021/ct100334n.
2009
- Cancer driver mutations in protein kinase genes.
Torkamani A, Verkhivker G, Schork N. J. Cancer Lett. 2009, 281,2,117-27. doi: 10.1016/j.canlet.2008.11.008. - Characterization of Multiple Stable Conformers of the EC5 Domain of E-cadherin and the Interaction of EC5 with E-cadherin Peptides.
Zheng K, Laurence J. S, Kuczera K, Verkhivker G, Middaugh C. R, Siahaan T. J. Chem Biol Drug Des. 2009, 73,6,584-98. doi: 10.1111/j.1747-0285.2009.00818.x. - Coarse-Grained Modeling of the HIV-1 Protease Binding Mechanisms: I. Targeting Structural Flexibility of the Protease Flaps and Implications for Drug Design.
Verkhivker G. Computational Intelligence Methods for Bioinformatics and Biostatistics. 2009. WOSUID: WOS:000268882700001 - Coarse-grained modeling of the HIV-1 protease binding mechanisms: II. Folding inhibition.
Verkhivker G. Computational Intelligence Methods for Bioinformatics and Biostatistics. 2009. WOSUID: WOS:000268882700002 - Computational Modeling of Structurally Conserved Cancer Mutations in the RET and MET Kinases: The Impact on Protein Structure, Dynamics, and Stability.
Dixit A, Torkamani A, Schork N. J, Verkhivker, G. Biophys J. 2009, 96,3,858-74. doi: 10.1016/j.bpj.2008.10.041. - Computational proteomics analysis of binding mechanisms and molecular signatures of the HIV-1 protease drugs.
Verkhivker G. Artif Intell Med. 2009, 45,2-3,197-206. doi: 10.1016/j.artmed.2008.08.011. - Hierarchical Modeling of Activation Mechanisms in the ABL and EGFR Kinase Domains: Thermodynamic and Mechanistic Catalysts of Kinase Activation by Cancer Mutations.
Dixit A, Verkhivker G. PLoS Comput Biol. 2009, 5,8,e1000487. doi: 10.1371/journal.pcbi.1000487. - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Preface.
Masulli F, Tagliaferri R, Verkhivker G. Lecture Notes in Computer Science. 2009. EID: 2-s2.0-70349319576 - Modeling Signal Propagation Mechanisms and Ligand-Based Conformational Dynamics of the Hsp90 Molecular Chaperone Full-Length Dimer.
Morra G, Verkhivker G, Colombo G. PLoS Comput Biol. 2009, 5,3,e1000323. doi: 10.1371/journal.pcbi.1000323. - Sequence and Structure Signatures of Cancer Mutation Hotspots in Protein Kinases.
Dixit A, Yi L, Gowthaman R, Torkamani A, Schork N. J, Verkhivker G. Plos One. 2009, 4,10,e7485. doi: 10.1371/journal.pone.0007485. - Structural and Computational Biology of the Molecular Chaperone Hsp90: From Understanding Molecular Mechanisms to Computer-Based Inhibitor Design.
Verkhivker G, Dixit A, Morra G, Colombo G. Curr Top Med Chem. 2009, 9,15,1369-85. doi: 10.2174/156802609789895700. - The Role of Covalent Dimerization on the Physical and Chemical Stability of the EC1 Domain of Human E-Cadherin.
Trivedi M, Davis R. A, Shabaik Y, Roy A, Verkhivker G, Laurence J. S, Middaugh C. R, Siahaan T. J. Journal of Pharmaceutical Sciences. 2009, 98,10,3562-74. doi: 10.1002/jps.21686.
2008
- Atomistic simulations of the HIV-1 protease folding inhibition.
Verkhivker G, Tiana G, Camilloni C, Provasi D, Broglia R. A. Biophysical Journal. 2008, 95,2,550-62. doi: 10.1529/biophysj.107.127621. - Structural modifications of ICAM-1 cyclic peptides to improve the activity to inhibit heterotypic adhesion of T cells.
Iskandarsyah, Tejo B. A, Tambunan U. S. F, Verkhivker G, Siahaan T. J. Chemical Biology & Drug Design. 2008, 72,1,27-33. doi: 10.1111/j.1747-0285.2008.00676.x. - Understanding ligand-based modulation of the Hsp90 molecular chaperone dynamics at atomic resolution.
Colombo G, Morra G, Meli M, Verkhivker G. Proceedings of the National Academy of Sciences of the United States of America. 2008, 105,23,7976-81. doi: 10.1073/pnas.0802879105.
2007
- Computational proteomics of biomolecular interactions in sequence and structure space of the tyrosine kinome: Evolutionary constraints and protein conformational selection determine binding signatures of cancer drugs.
Verkhivker, G. Lecture Notes in Computer Science. 2007, p.604-611. EID: 2-s2.0-37249026752 - Computational proteomics of biomolecular interactions in the sequence and structure space of the tyrosine kinome: Deciphering the molecular basis of the kinase inhibitors selectivity.
Verkhivker G. Proteins-Structure Function and Bioinformatics. 2007, 66,4,912-29. doi: 10.1002/prot.21287. - Computational structural proteomics of the kinases binding specificity and drug resistance.
Verkhivker G. Proceedings of the International School of Physics “Enrico Fermi”. 2007. EID: 2-s2.0-84884611965 - Energy landscapes of bimolecular binding and molecular modulators of protein-protein interactions.
Verkhivker G. Proceedings of the International School of Physics “Enrico Fermi”. 2007. EID: 2-s2.0-84884648721 - Exploring mechanisms of protein folding and binding in signal transduction networks.
Verkhivker G. Proceedings of the International School of Physics “Enrico Fermi”. 2007. EID: 2-s2.0-84884607010 - Exploring sequence-structure relationships in the tyrosine kinome space: functional classification of the binding specificity mechanisms for cancer therapeutics.
Verkhivker G. Bioinformatics. 2007, 23,15,1919-26. doi: 10.1093/bioinformatics/btm277. - In silico profiling of tyrosine kinases binding specificity and drug resistance using Monte Carlo simulations with the ensembles of protein kinase crystal structures.
Verkhivker G. Biopolymers. 2007, 85,4,333-48. doi: 10.1002/bip.20656. - Quantifying intrinsic specificity: A potential complement to affinity in drug screening.
Wang J, Zheng X, Yang Y, Drueckhammer D, Yang W, Verkhivker G, Wang E. Physical Review Letters. 2007, 99,19,198101. doi: 10.1103/PhysRevLett.99.198101. - Sequence recognition of alpha-LFA-1-derived peptides by ICAM-1 cell receptors: Inhibitors of T-cell adhesion.
Yusuf-Makagiansar H, Yakovleva T. V, Tejo B. A, Jones K, Hu Y. B, Verkhivker G, Audus K. L, Siahaan T. J. Chemical Biology & Drug Design. 2007, 70,3,237-46. doi: 10.1111/j.1747-0285.2007.00549.x.
2006
- BIOT 198-Quantifying intrinsic specificity: A potential complement to affinity in drug screening.
Wang J, Yang Y. L, Yang W Drueckhammer, D. G, Verkhivker G. Abstracts of Papers of the American Chemical Society. 2006. - Imprint of evolutionary conservation and protein structure variation on the binding function of protein tyrosine kinases.
Verkhivker G. Bioinformatics. 2006, 22,15,1846-54. doi: 10.1093/bioinformatics/btl199.
2005
- A microscopic study of disorder-order transitions in molecular recognition of unstructured proteins: Hierarchy of structural loss and the transition state determination from Monte Carlo simulations of P27<sup>KIP1</sup> protein coupled unfolding and unbinding.
Verkhivker G. Supramolecular Structure and Function 8. 2005. doi: 10.1007/0-306-48662-8_12 - Computational detection of the binding site hot spot and predicting energetics of ligand binding at the remodeled human growth hormone-receptor interface using a hierarchy of molecular docking and binding free energy approaches.
Verkhivker G. Supramolecular Structure and Function 8. 2005. doi: 10.1007/0-306-48662-8_13 - Protein conformational transitions coupled to binding in molecular recognition of unstructured proteins: Deciphering the effect of intermolecular interactions on computational structure prediction of the p27Kip1 protein bound to the cyclin A-cyclin-dependent kinase 2 complex.
Verkhivker G. Proteins-Structure Function and Bioinformatics. 2005. doi: 10.1002/prot.20351
2004
- Computational analysis of ligand binding dynamics at the intermolecular hot spots with the aid of simulated tempering and binding free energy calculations.
Verkhivker G. Journal of Molecular Graphics & Modelling. 2004, 22,5,335-48. doi: 10.1016/j.jmgm.2003.12.001. - Protein conformational transitions coupled to binding in molecular recognition of unstructured proteins: Hierarchy of structural loss from all-atom Monte Carlo Simulations of p27(Kip1) unfolding-unbinding and structural determinants of the binding mechanism.
Verkhivker G. Biopolymers. 2004. doi: 10.1002/bip.20149 - The use of chemical recuperation of heat in a power plant.
Verkhivker G. Energy. 2004. DOI: 10.1016/j.energy.2003.10.010
2003
- Computational detection of the binding-site hot spot at the remodeled human growth hormone-receptor interface.
Verkhivker G, Bouzida D, Gehlhaar D. K, Rejto P. A, Freer S. T, Rose P. W. Proteins-Structure Function and Bioinformatics. 2003, 53,2,201-19. doi: 10.1002/prot.10456. - Energy landscape theory, funnels, specificity, and optimal criterion of biomolecular binding.
Wang J, Verkhivker G. Physical Review Letters. 2003, 90,18,188101. doi: 10.1103/PhysRevLett.90.188101. - Simulating disorder-order transitions in molecular recognition of unstructured proteins: Where folding meets binding.
Verkhivker G. Abstracts of Papers of the American Chemical Society. 2003, 100,9,5148-53. doi: 10.1073/pnas.0531373100.
2002
- Complexity and simplicity of ligand-macromolecule interactions: the energy landscape perspective.
Verkhivker G, Bouzida D, Gehlhaar D.K, Rejto P. A, Freer S. T, Rose P. W. Current Opinion in Structural Biology. 2002, 12,2,197-203. doi: 10.1016/s0959-440x(02)00310-x. - Computer simulations of molecular recognition using generalized-ensemble Monte Carlo methods.
Verkhivker G. Abstracts of Papers of the American Chemical Society. 2002. WOSUID: WOS:000176296702832 - Hierarchy of simulation models in predicting structure and energetics of the Src SH2 domain binding to tyrosyl phosphopeptides.
Verkhivker G, Bouzida D, Gehlhaar D. K, Rejto P. A, Schaffer L, Arthurs S, Colson A. B, Freer S. T, Larson V Luty B. A, et al. Journal of Medicinal Chemistry. 2002, 45,1,72-89. doi: 10.1021/jm0101141 - Monte Carlo simulations of the peptide recognition at the consensus binding site of the constant fragment of human immunoglobulin G: the energy landscape analysis of a hot spot at the intermolecular interface.
Verkhivker G, Bouzida D, Gehlhaar D. K, Rejto P. A, Freer S. T, Rose P. W. Proteins-Structure Function and Bioinformatics. 2002, 48,3,539-57. doi: 10.1002/prot.10164 - The problem of increasing the efficiency of combined-cycle plants.
Verkhivker G, Kravchenko V.P, Laguta S.M. Teploenergetika. 2002. EID: 2-s2.0-0036950383 - The problem of increasing the efficiency of combined-cycle plants.
Verkhivker G, Kravchenko V.P, Laguta S.M. Thermal Engineering. 2002. EID: 2-s2.0-0036950383
2001
- Conformational composition of 5-alkyl-1,3-oxathianes
Turyanskaya A. M, Novikov A. N, Verkhivker G, Kuznetsov V. V. Russian Journal of General Chemistry. 2001, 71,9,1487-1490. doi: 10.1023/a:1013930725137 - Hierarchy of simulation models in predicting molecular recognition mechanisms from the binding energy landscapes.
Verkhivker G. Abstracts of Papers of the American Chemical Society. 2001, 45,4,456-70. WOSUID: WOS:000170690001917 - Hierarchy of simulation models in predicting molecular recognition mechanisms from the binding energy landscapes: Structural analysis of the peptide complexes with SH2 domains.
Verkhivker G, Bouzida D, Gehlhaar D. K, Rejto P. A, Schaffer L, Arthurs S, Colson A. B, Freer S.T, Larson V, Luty B. A. et al. Proteins-Structure Function and Bioinformatics. 2001, 45,4,456-70. doi: 10.1002/prot.10019 - Monte Carlo simulations of HIV-1 protease binding dynamics and thermodynamics with ensembles of protein conformations: Incorporating protein flexibility in deciphering mechanisms of molecular recognition.
Verkhivker G, Bouzida D, Gehlhaar D. K, Rejto P. A, Schaffer L, Arthurs S, Colson A. B, Freer S.T, Larson V, Luty B. A. et al. Theoretical and Computational Chemistry. 2001, p.289-340. EID: 2-s2.0-0035785710 - Navigating ligand-protein binding free energy landscapes: universality and diversity of protein folding and molecular recognition mechanisms.
Verkhivker G. M, Rejto P. A, Bouzida D, Arthurs S, Colson A. B, Freer S. T, Gehlhaar D. K, Larson V, Luty B. A, Marrone T. et al. Chemical Physics Letters. 2001. doi: 10.1016/s0009-2614(01)00161-0 - On the exergy analysis of power plants.
Verkhivker G. P, Kosoy B. V. Energy Conversion and Management. 2001. doi: 10.1016/s0196-8904(00)00170-9 - Parallel simulated tempering dynamics of ligand-protein binding with ensembles of protein conformations.
Verkhivker G. M, Rejto P. A, Bouzida D, Arthurs S, Colson A. B, Freer S. T, Gehlhaar D. K, Larson V, Luty B. A, Marrone T. et al. Chemical Physics Letters. 2001. DOI: 10.1016/s0009-2614(01)00168-3 - Zero-emissions gas-fired cogeneration of power and hydrogen.
Verkhivker G, Yantovski E. International Journal of Hydrogen Energy. 2001. DOI: 10.1016/s0360-3199(01)00048-9son V, Luty B. A, Marrone T. et al. Chemical Physics Letters. 2001. DOI: 10.1016/s0009-2614(01)00168-3
2000
- Deciphering common failures in molecular docking of ligand-protein complexes.
Verkhivker G. M, Rejto P. A, Bouzida D, Arthurs S, Colson A. B, Freer S. T, Gehlhaar D. K, Larson V, Luty B. A, Marrone T. et al. Journal of Computer-Aided Molecular Design. 2000, 14,8,731-51. doi: 10.1023/a:1008158231558
1999
- Computer simulations of ligand-protein binding with ensembles of protein conformations: A Monte Carlo study of HIV-1 protease binding energy landscapes.
Bouzida D, Rejto P. A, Arthurs S, Colson A. B, Freer S. T, Gehlhaar D. K, Larson V, Luty B. A, Rose P. W, Verkhivker G. International Journal of Quantum Chemistry. 1999, 72(1):73-84. DOI: 10.1002/(sici)1097-461x(1999)72:1<73::aid-qua7>3.0.co;2-o - Examining ligand-protein interactions with binding-energy landscapes.
Rejto P. A, Bouzida D, Verkhivker G. Theoretical Chemistry Accounts. 1999, 131,148-152. doi: 10.1007/s002140050420 - Monte Carlo study of ligand-protein binding energy landscapes with the weighted histogram analysis method.
Bouzida D, Rejto P. A, Verkhivker G. International Journal of Quantum Chemistry. 1999. DOI: 10.1002/(sici)1097-461x(1999)73:2<113::aid-qua6>3.0.co;2-9 - Novel ATP-site cyclin-dependent kinase (CDK) inhibitors: Selective CDK inhibitors.
Duvadie R. K, Chong W. K. M, Li L, Chu S. S, Yang Y. M, Nonomiya J, Tucker K. D, Lewis C. T, Knighton D. R, Ferre R. A. et al. Abstracts of Papers of the American Chemical Society. 1999. WOSUID: WOS:000082033902962 - Thermodynamics and kinetics of ligand-protein binding studied with the weighted histogram analysis method and simulated annealing.
Bouzida D, Arthurs S, Colson A.B, Freer S.T, Gehlhaar D.K, Larson V, Luty B.A, Rejto P.A, Rose P.W, Verkhivker G. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing. 1999. EID: 2-s2.0-0032610861 - Towards understanding the mechanisms of molecular recognition by computer simulations of ligand-protein interactions.
Verkhivker G. M, Rejto P. A, Bouzida D, Arthurs S, Colson A. B, Freer S. T, Gehlhaar D. K, Larson V, Luty B. A, Marrone T. et al. Journal of Molecular Recognition. 1999. DOI: 10.1002/(sici)1099-1352(199911/12)12:6<371::aid-jmr479>3.0.co;2-o - Unique cyclin-dependent kinase (CDK) inhibitors at the ATP-site.
Chong W. K. M, Li L, Duvadie R. K, Chu S. S, Yang Y. M, Nonomiya J, Tucker K. D, Knighton D. R, Ferre R. A, Lundgren K. et al. Abstracts of Papers of the American Chemical Society. 1999. WOSUID: WOS:000082033903061 - Thermodynamics and kinetics of ligand-protein binding studied with the weighted histogram analysis method and simulated annealing.
Bouzida D, Arthurs S, Colson AB, Freer ST, Gehlhaar DK, Larson V, Luty BA, Rejto PA, Rose PW, Verkhivker G. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing. 1999, 426-37. doi: 10.1142/9789814447300_0042
1998
- Ligand-protein binding energy landscapes in drug design.
Rejto P. A, Bouzida D, Verkhivker G. Abstracts of Papers of the American Chemical Society. 1998. WOSUID: WOS:000075234902058 - Molecular anchors with large stability gaps ensure linear binding free energy relationships for hydrophobic substituents.
Rejto P.A, Verkhivker G. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing. 1998, 362-73. EID: 2-s2.0-0031635564 - Predicting structural effects in HIV-1 protease mutant complexes with flexible ligand docking and protein side-chain optimization.
Schaffer L, Verkhivker G. Proteins-Structure Function and Bioinformatics. 1998, 33, 2,295-310. doi: 10.1002/(sici)1097-0134(19981101)33:2<295::aid-prot12>3.0.co;2-f - Molecular anchors with large stability gaps ensure linear binding free energy relationships for hydrophobic substituents.
Rejto PA, Verkhivker G. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing. 1998, 362-73.
1997
- Mean field analysis of FKBP12 complexes with FK506 and rapamycin: Implications for a role of crystallographic water molecules in molecular recognition and specificity.
Rejto PA, Verkhivker G. Proteins-Structure Function and Genetics. 1997, 28,3,313-24. WOSUID: WOS:A1997XH81500002 - Structural consensus in ligand-protein docking identifies recognition peptide motifs that bind streptavidin.
Shah N.K, Rejto P.A, Verkhivker G. Proteins: Structure, Function and Genetics. 1997, 28,3,421-33. doi: 10.1002/(SICI)1097-0134(199707)28:3<421::AID-PROT11>3.0.CO;2-J
1996
- A mean field model of ligand protein interactions: Implications for the structural assessment of human immunodeficiency virus type 1 protease complexes and receptor-specific binding.
Verkhivker G, Rejto P. Proceedings of the National Academy of Sciences of the United States of America. 1996. doi: 10.1073/pnas.93.1.60 - Empirical free energy calculations of human immunodeficiency virus type 1 protease crystallographic complexes. II. Knowledge-based ligand-protein interaction potentials applied to thermodynamic analysis of hydrophobic mutations.
Verkhivker G. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing. 1996, 638-52. EID: 2-s2.0-0030309963 - Exploring the energy landscapes of molecular recognition by a genetic algorithm: Analysis of the requirements for robust docking of HIV-1 protease and FKRP-12 complexes.
Verkhivker G, Rejto P. A, Gehlhaar D. K, Freer S. T. Proteins-Structure Function and Genetics. 1996. DOI: 10.1002/(sici)1097-0134(199607)25:3<342::aid-prot6>3.3.co;2-3 - Unraveling principles of lead discovery: From unfrustrated energy landscapes to novel molecular anchors.
Rejto P. A, Verkhivker G. Proceedings of the National Academy of Sciences of the United States of America. 1996, 93(17):8945-50. DOI: 10.1073/pnas.93.17.8945 - Exploring the energy landscapes of molecular recognition by a genetic algorithm: analysis of the requirements for robust docking of HIV-1 protease and FKBP-12 complexes.
Verkhivker G, Rejto PA, Gehlhaar DK, Freer ST. Proteins. 1996, 25,3,342-53. doi: 10.1002/(sici)1097-0134(199607)25:3<342::aid-prot6>3.0.co;2-h - Empirical free energy calculations of human immunodeficiency virus type 1 protease crystallographic complexes. II. Knowledge-based ligand-protein interaction potentials applied to thermodynamic analysis of hydrophobic mutations.
Verkhivker G. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing. 1996, 638-52.
1995
- Computer-aided structure prediction of ligand-protein complexes: Exploring the energy landscapes of molecular recognition with HIV-1 protease.
Verkhivker G, Rejto P.A, Gehlhaar D.K, Freer S.T. International Antiviral News. 1995, 3,146-147. EID: 2-s2.0-0028823563 - DOCKING CONFORMATIONALLY FLEXIBLE SMALL MOLECULES INTO A PROTEIN-BINDING SITE THROUGH SIMULATED EVOLUTION.
Gehlhaar D. K, Verkhivker G, Freer S. T. Abstracts of Papers of the American Chemical Society. 1995, p.615-627. 615-627p. WOSUID: WOS:A1995QP23201907 - EMPIRICAL FREE-ENERGY CALCULATIONS OF LIGAND-PROTEIN CRYSTALLOGRAPHIC COMPLEXES .1. KNOWLEDGE-BASED LIGAND-PROTEIN INTERACTION POTENTIALS APPLIED TO THE PREDICTION OF HUMAN-IMMUNODEFICIENCY-VIRUS-1 PROTEASE BINDING-AFFINITY.
Verkhivker G, Appelt K, Freer S. T, Villafranca J. E. Protein Engineering. 1995, Chapter 85, p.261-265. 261-265p. doi: 10.1093/protein/8.7.677 - MOIL – A PROGRAM FOR SIMULATIONS OF MACROMOLECULES
Elber R, Roitberg A, Simmerling C, Goldstein R, Li H. Y, Verkhivker G, Keasar C, Zhang J, Ulitsky A. Computer Physics Communications. 1995, p.165-191.165-191p. doi: 10.1016/0010-4655(95)00047-j - MOLECULAR RECOGNITION OF THE INHIBITOR AG-1343 BY HIV-1 PROTEASE – CONFORMATIONALLY FLEXIBLE DOCKING BY EVOLUTIONARY PROGRAMMING.
Gehlhaar D. K, Verkhivker G, Rejto P. A, Sherman C. J, Fogel D. B, Fogel L. J, Freer S. T. Chemistry & Biology. 1995. DOI: 10.1016/1074-5521(95)90050-0
1993
- FREE-ENERGY SIMULATIONS OF THE PROTEIN LEGHEMOGLOBIN MUTANTS – MEAN-FIELD STUDIES OF THE NATIVE-STATE STABILITY AND LIGAND DIFFUSION.
Verkhivker G, Elber R. Abstracts of Papers of the American Chemical Society. 1993. WOSUID: WOS:A1993LP32101320 - FREE-ENERGY SIMULATIONS OF THE PROTEIN LEGHEMOGLOBIN MUTANTS – MOLECULAR-DYNAMICS AND MEAN-FIELD STUDIES OF THE FOLDED STATE STABILITY.
Verkhivker G, Elber R. Abstracts of Papers of the American Chemical Society. 1993. WOSUID: WOS:A1993LP32200871
1992
- LOCALLY ENHANCED SAMPLING IN FREE-ENERGY CALCULATIONS – APPLICATION OF MEAN FIELD APPROXIMATION TO ACCURATE CALCULATION OF FREE-ENERGY DIFFERENCES.
Verkhivker G, Elber R, Nowak W. Journal of Chemical Physics. 1992. DOI: 10.1063/1.463456 - MICROSCOPIC MODELING OF LIGAND DIFFUSION THROUGH A PROTEIN – CARBON-MONOXIDE IN LEGHEMOGLOBIN.
Verkhivker G, Elber R. Abstracts of Papers of the American Chemical Society. 1992. WOSUID: WOS:A1992JJ31300920 - MICROSCOPIC MODELING OF LIGAND DIFFUSION THROUGH A PROTEIN – CARBON-MONOXIDE IN LEGHEMOGLOBIN.
Verkhivker G, Elber R. Abstracts of Papers of the American Chemical Society. 1992. WOSUID: WOS:A1992JJ31300920 - MICROSCOPIC MODELING OF LIGAND DIFFUSION THROUGH THE PROTEIN LEGHEMOGLOBIN – COMPUTER-SIMULATIONS AND EXPERIMENTS.
Verkhivker G, Elber R, Gibson Q H. Journal of the American Chemical Society. 1992. DOI: 10.1021/ja00046a036
1990
- ANALYSIS OF COMPLEXATING ABILITY OF 12-CROWN-4 BY THE MOLECULAR ELECTROSTATIC POTENTIAL METHOD.
Kuzmin V. E, Rublev I. S, Korovin S. V, Verkhivker G. Ukrainskii Khimicheskii Zhurnal. 1990. WOSUID: WOS:A1990CT29300019 - ANALYSIS OF THE COMPLEXING ABILITY OF 18-CROWN-6 BY THE METHOD OF MOLECULAR ELECTROSTATIC POTENTIAL.
Kuzmin V. E, Rublev I. S, Verkhivker G, Korovin S.V. Ukrainskii Khimicheskii Zhurnal. 1990. WOSUID: WOS:A1990CY50700026
1989
- CONFORMATIONAL FACTORS OF THE ISOTOPIC SELECTIVITY OF 18-CROWN-6.
Verkhivker G, Kuzmin V. E. Dopovidi Akademii Nauk Ukrainskoi Rsr Seriya B-Geologichni Khimichni Ta Biologichni Nauki. 1989. WOSUID: WOS:A1989T236100009 - CONFORMATIONAL FACTORS OF THE ISOTOPIC SELECTIVITY OF 18-CROWN-6.
Khutorskii V.E, Kamenchuk A.A, Verkhivker G.M, Kuz’min V.E. Dopovidi Akademii Nauk Ukrainskoi Rsr Seriya B-Geologichni Khimichni Ta Biologichni Nauki. 1989. WOSUID: WOS:A1989T236100009 - Contribution from the aqueous phase to stability of Cs<sup>+</sup> and Na<sup>+</sup> cryptand[2.2.2] complexes.
Khutorskii V.E, Kamenchuk A.A, Verkhivker G, Kuz’min V.E. Theoretical and Experimental Chemistry. 1989. DOI: 10.1007/BF00534459 - CONTRIBUTION OF AQUEOUS PHASE TO STABILITY OF THE COMPLEXES OF CRYPTAND 2.2.2 WITH CS+ AND NA+.
Khutorskii V.E, Kamenchuk A.A, Verkhivker G, Kuz’min V.E. Teoreticheskaya I Eksperimentalnaya Khimiya. 1989. WOSUID: WOS:A1989CT58500024
1988
- Gas power plants in the power system.
Verkhivker G, Pflugbail’ I, Yantovskii E.I. Thermal Engineering (English translation of Teploenergetika). 1988. EID: 2-s2.0-0024096910 - GAS POWER-PLANTS IN THE POWER-SYSTEM.
Verkhivker G, Pflugbail’ I, Yantovskii E.I. Thermal Engineering. 1988. WOSUID: WOS:A1988U948100010 - THEORETICAL CONFORMATION ANALYSIS OF THE KINETIC MACROCYCLIC EFFECT.
Kuzmin V. E, Verkhivker G. Dopovidi Akademii Nauk Ukrainskoi Rsr Seriya B-Geologichni Khimichni Ta Biologichni Nauki. 1988. WOSUID: WOS:A1988R303500013
1987
- NUCLEAR/GAS POWER PLANT.
Verkhivker G, Yantovskii E.I. Thermal Engineering (English translation of Teploenergetika).1987. EID: 2-s2.0-0023451440
1985
- A NUMERICAL-METHOD OF SEARCH FOR THE REACTION-PATH AND SADDLE-POINT ON A POTENTIAL SURFACE – APPLICATION TO THE CONFORMATIONAL ISOMERIZATION OF CYCLOHEXANE.
Dashevskii V. G, Verkhivker G, Kuzmin V. E. Doklady Akademii Nauk Sssr. 1985. WOSUID: WOS:A1985AFE4600026 - A POSSIBLE APPROACH TO DETERMINATION OF THE PREFERRED CONFORMATIONS IN SUBSTITUTED SATURATED 7-MEMBERED RINGS.
Kuzmin V. E, Kamalov G. L, Verkhivker G. Journal of Structural Chemistry. 1985. WOSUID: WOS:A1985C717200002 - A possible approach to determination of the preferred conformations in substituted saturated seven-membered rings.
Kuzmin V. E, Kamalov G. L, Verkhivker G. Journal of Structural Chemistry. 1985. DOI: 10.1007/BF00754118
1984
- NUCLEAR GAS POWER-PLANT.
Verkhivker G. P, Yantovskii E. I. Thermal Engineering. 1984. WOSUID: WOS:A1984ALS3600002
1981
- METHOD FOR COMPARING NUCLEAR-POWER AND PRODUCTION PROCESS INSTALLATIONS.
Verkhivker G, Kravchenko V. P. Soviet Atomic Energy. 1981. DOI: 10.1007/bf01126342 - The predominant conformation of 1,3-dioxepane.
Kamalov G.L, Kuz’min V.E, Sharygin V.N, Verkhivker G. Theoretical and Experimental Chemistry. 1981. DOI: 10.1007/BF01114439